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201. The Sorption of Condensable Vapours by Porous Solids. Part I I I .  
Multimolecular Adsorption. 

By A. GRAHAM FOSTER. 
A simplified derivation of the general equations of the Brunauer theory of multimolecular adsorption is 

followed by a discussion of the application of this theory to abnormal types of isothermal. 

ADAM has recently drawn attention (Nature, 1945, 155, 154) t o  the merits of the theory of multimolecular 
adsorption put forward by Brunauer and his collaborators ( J .  Amer. Chern. SOL, 1938,60,309). It is remarkable 
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that a general theory of adsorption which claims to account for all observed types of isothermal should have 
attracted comparatively little notice in this country, but, unfortunately, the equations to which this theory 
finally leads are complex, and one of the fundamental assumptions, viz., that the net heat of sorption falls to 
zero after the completion of the first layer, is contrary to experimental fact. However, the theory has been 
remarkably successful in accounting for the main types of sorption isothermal, although the authors have not 
discussed in detail just how this is achieved ; they merely show that, by assigning suitable values to the con- 
stants of their equations, i t  is possible to obtain curves which approximate to the various known types of 
isothermal. A simplified derivation of the theory is now given, followed by an examination of what may be 
regarded as the “ limiting cases ’’ of the general equation, thus making clear why the theory is so successful 
in explaining the so-called ‘‘ abnormal ” types of isothermal. In Part IV the application of the theory to linear 
isothermals is discussed in some detail. 

Derivation of the General E‘quation.-Langmuir, in the classical paper in which he first presented the theory 
of unimolecular adsorption ( J .  Awer. Chew. SOC., 1918, 40, 1361), also discussed the possibility of multilayer 
adsorption, and derived a complex equation which Brunauer has simplified by making the rather drastic 
assumption that the net heat of sorption falls to zero after the first layer is completed. In considering the 
evaporation-condensation equilibria for the second layer, Langmuir supposed that condensation occurred on 

the uncovered portion of the first layer and that evaporation from the latter 
took place from that part which was not itself covered by the second layer. 
The various layers, being in equilibrium with the gas phase, are necessarily in 
equilibrium with one another, so that, as pointed out by Brunauer, i t  is 
unnecessary to consider exchanges of adsorbed molecules between the various 
layers. If we denote the fractions of the total surface covered by 0, 1, 2, etc., 

evaporation for each layer, we obtain a series of equations of the type 
so & sz S3 A 7 4  Ss layers by so, sl, s2, etc., as in Fig. 1, and equate rates of condensation and 

% P ~ O  = PIS,; a2ps1 = pzs2, etc., or, replacing cx/p by a single constant c, wa have for the nth layer 

FIG. 1. 

ri 
s, = (cn . c, - 1’ c ,  - 2 . . . . c2cl)sopn 

- & 
Cnpsn- = s,, whence 

The total adsorption a, expressed as a fraction or multiple of the amount required to form a complete uni- 
molecular layer, is then given by a = s1 + 2s2 + 3s3 . . . . + ns,, and the additional relation so + s1 + s2 + 
Sn = 1 enables us to express a as a function of p : 

a = clpso + 2clc2p2s0 + 3c,c2c3p3~, , . . . N C , C ~ C ~  . . . . C, - I ~ , p n ~ o  
1 = SO + clpso + c1c2p2so + C I C Z C ~ P ~ S O  -t - - - - + ~ 1 ~ 2 ~ 3  . . . . C ~ P ~ S O  

whence 

a = ( c l p + 2 ~ , ~ 2 ~ 2 + 3 ~ 1 ~ 2 ~ 3 ~ ~ +  . . . . +nc,c2c,. . . C , P ~ ) / ( ~ + ~ , ~ + C ~ C ~ P ~ + C ~ C ~ C ~ P ~ .  . . . +clc2c3 . . . capn) . ( 1 )  
The essential feature of Brunauer’s treatment lies in the development of Langmuir’s suggestion that this 
relation could be simplified by putting c2 = c3, etc. We then get 

(2) a = c l p ( l  + 2x + 3x2 . . . . + n;t”c -1 ) / {1  + c l p ( l  + x + x2 . . . x ” - l ) > .  . . 
where x = cZp and i t  is now possible to sum both series to n - 1 terms (or to infinity, if x < l ) ,  since the lower 
series is a geometrical progression and the upper series is its differential. Equation (2) is really the simplest 
form of the multilayer theory. The summation of the two series, although desirable in order to facilitate 
computation when n is large, is not essential, and, as shown by Brunauer, results in the less easily remembered 
form 

a = c x ( l  - (n + 1)xn + N X L +  1}/(1 - x ) { l  + (c - 1)x - cxn+1> . . . . (3)  
(where clp has been replaced by cx to conform with his notation ; i .e.,  G = cl/c;). 

expressed approximately in the form 

where Q is the net heat of sorption and Po the saturation pressure. This relation is strictly valid only when the 
partition functions of the adsorbed and the liquid state are identical, a condition more likely to be fulfilled in the 
second and subsequent layers than in the first. The same condition is implicit in Brunauer’s assumption 
that the evaporation-condensation properties of the molecules in the second and higher layers are identical 
with those of the bulk liquid. The direct introduction of equation (4) as an alternative to Brunauer’s kinetic 
treatment enables the final result to be reached more rapidly. The crucial point of Brunauer’s theory is that 
Q is put equal to zero for all layers after the first, i .e.,  the total heat of sorption is assumed to be equal to heat 
of condensation. This makes c2 = l i p o  and x = p / p o ,  the relative pressure, which is always less than unity, 
and thus enables the series to be summed to infinity if necessary. One important consequence of this assump- 
tion seems to have been overlooked by the authors, namely, that a layer for which Q = 0 can never be more 
than half saturated. For instance, in the simple Langmuir equation a = c l p / ( l  + clp) i t  is evident that if 
c1 = l / p o  then a = x / ( 1  + x) ,  and when x = 1, a = 9.  A similar effect appears in equation (2), since when 

The author has already shown (this vol., p. 364) that the constant c1 of the Lsngmuir equation may be 

clpo = eQIRT . . . . . , . . . . . . (4) 
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x = lwefinda = cx(1 + 2 + 3 + 4 + . . . .  + n)/(l  + ncx). As cx increases, cx / ( l  + cx) approaches unity 
and a = (1 + 2 + 3 + 4 + . . . .  + n)/n = n(n + 1)/2n = (72 + 1)/2 or (n - 1)/2 + 1;  i.e., beyond the first 
layer, the total adsorption space is only half filled even when the saturation pressure is reached. 

Limiting Cases of the General EquatioTz.-In special cases a further simplification of equation (2) is possible. 
(i) When n becomes infinite the well-known expression for the sum to infinity of a geometrical series enables us 
to write 

. . . . . . . . . .  a = cx/( l  - x)( l  - x + cx) ( 5) 
provided of course that x be really <1 (or Q zero). Now, according to Brunauer, this expression is not very 
different from equation (3) when ?z >5 (Fig. 3 shows that this is so for values of x <it), and its use leads to the 
fairly simple equation 

according to which the function on the left should give a linear plot against p from which the constant c can be 
evaluated. Unfortunately, in the absence of low-pressure data, the amount required to form a unimolecular 
layer (urn) will also be unknown, and a must be replaced by v/u,, where 2, is the actual amount adsorbed at  pres- 
sure p .  The function p / v ( p ,  - p )  is then plotted against $ / P o ,  the slope being equal to (l/u,)(c - 1)/c, and the 
intercept equal to l/cu,, whence both unknowns, c and v,, may be determined. At low pressures and large 

p/a(po - P )  = l / c  + ( p / p , ) ( c  - l , / c  - * * * - * * (6) 

- -  
values of c, equation (6) reduces to the Langmuir 
equation, giving a linear plot of p / v  against p .  

(ii) When the first layer is strongly held, c is large, 
and when cx is also large compared with (1 - x),  
equation (5) reduces to 

(7) a = c x / ( l  - x)cx or a = 1/(1 - x) . 
and we find the adsorption following the Langmuir 
equation at  very low pressures but a t  higher pressures 
following an equation which gives an isotherm convex 
to the pressure axis (curve I, Fig. 2) .  Isothermals of 
this type are known, but direct application of equation 
(7) is usually rendered difficult by the absence of 
accurate data a t  low pressures from which to calculate 
the amount held in the first layer (i.e.,  to determine 
what concentration corresponds to a = 1).  It is, 
however, possible to evaluate this quantity from the 
higher-pressure data alone if equation (7) is valid, 
because the concentrations a t  which x = 8 or $ should 
correspond to a = 2 or 3, respectively. The observed 
concentrations are then divided by the amount pre- 
sumed to be held in the first layer, and the actual 
Dressures converted into relative pressures in order to 

’ 

fi 

FIG. 2. 
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Gbtain the a - x curve. Lambeit and Foster’s data (Proc. Roy. Soc., 1932, A ,  136, 3G3) for benzene on ferric 
oxide, treated in this way, give the points xepresented by the crosses in Fig. 2, which approximate to the 
actual graph of equation (7) .  The observed net heat of sorption is only 3 cals./g. over this range, compared 
with 100 cals. for the latent heat of condensation, so that the assumption that Q = 0 is almost justified for 
this system. On the other hand, the data for ethyl alcohol on the same adsorbent show poor agreement with 
equation (7).  Reasonable agreement is found with water on copper oxide but not on manganese oxide, Bray 
and Draper’s data (Proc.  Xat. Acad. Sci., 1926, 12, 295) being used. Bangham and Mosallam’s data (Proc. 
Roy. SOC., 1938, A ,  165, 552) for the adsorption of benzene on plane surfaces of mica might be expected to 
provide a more favourable test of equation (7), but the agreement is only moderate. If this equation were 
of general validity a t  high relative pressures it would of course be possible to reduce all isothermals to the 
same scale by converting actual pressures into relative pressures and concentrations to a values. 

(iii) Another interesting case arises when c = 1 (or Q = 0), for then 

a = x / ( l -  x)  . . . . . . . . . . .  * (8) 

over the entire range, giving an isothermal convex to the p axis as shown in Fig. 2, curve 11. As Brunauer 
points out, this particular case appears to have been realised experimentally by Reyerson and Cameron ( J .  
Physical Chem., 1935, 39, 181) with bromine on silica gel. Since x = + when a = 1, Brunauer was able to 
calculate the theoretical maximum sorption in the first layer, and hence the surface area of the gel was found 
to be 470 m.2/g., agreeing well with the mean value of 500 calculated by different methods from the isothermals 
of more complex types given by gases on the same gel a t  low temperatures. 

(iv) Finally, the multilayer theory requires that adsorption shall still take place, even if the net heat of 
sorption is negative. When c < 1 we find 

a = c x / ( l  - x ) ( l  - x )  = cx / ( l  - x)2 . . . . . . . . .  (9) 
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A plot of this function when G = 1/10 is shown in curve I11 of Fig. 2. As yet, this extreme type of isothermal 
does not appear to have been realised experimentally. 

Linear ~TsotlzermaZs.-Brunauer and his collaborators do not appear to have considered the interesting 
case which arises when n has the values 2 or 3, for the theory then leads directly to an explanation of the 
peculiar isothermals given by the alcohols on silica gels (Foster, Proc. Roy. SOC., 1934, A ,  16, 129) ; e g . ,  the 
isothermal of ethyl alcohol on silica gel B shows a linear middle portion which follows an extensive region of 
low-pressure sorption and extends almost to saturation. If in equation (1) we put c2 = c3, n = 3, and make c 
large, we find 

a = (1 + 2% + 3x2)/(1 + x + x2)  . . . . . . . . ( 10) 

where, although x is still equal to c,p,  i t  is not necessarily equal to the relative pressure, because q is not neces- 
sarily zero for the second and the third layer. This function, shown in Fig. 3, gives a curve of the same shape as 
the alcohol isothermal just mentioned, the linear part of which extrapolates back to  zero pressure at  about 
150 mg./g., SO that the a values may be calculated by dividing actual concentrations by 150. The crosses in 
Fig. 3 were obtained by plotting these a values against p/40, instead of p / S O  as required if c2 = l/p,,. The 
agreement is striking, and since the isothermals of the other alcohols can be reduced to the same scale in a 
similar mariner (as shown in Part IV), i t  suggests that the linear isothermal does really represent the building 

FIG. 3. 
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a. 
up of a second and a third layer on top of the more strongly held first layer. 
the terms in x2 vanish, leaving 

In the simpler case where n = 2, 

a = cx(1 + 2x)/[1 + cx(1 + x)] - . . . . . . . . . (11) 

If is put equal to 10 and x = P/2O (instead of P/35 for x = Pipo) ,  an excellent agreement is obtained with the 
isothermal of ethyl alcohol on silica gel A determined by Lambert and Foster (Proc. Roy. SOC., 1931, A, 134, 
246). 

Deteyminajion of Surface Area of Adsorbents.-Shortly after the discovery of these linear isothermals, 
Brunauer and Emmett ( J .  Amer. Chern. S O C . ,  1935, 57, 1754) investigated the sorption of gases a t  low temper- 
atures on iron catalysts and obtained S-shaped isothermals with an intermediate linear portion. At first i t  
was thought that the extrapolation of the linear part to  zero pressure, called ‘‘ point A,” corresponded to the 
volume of gas required to cover the surface with a unimolecular layer, but later, better agreement was found 
by taking “ point B ” a t  which the linear isothermal begins. The applications of this method have been 
described in Some detail (Brunauer, “ Physical Adsorption Of Gases,” Oxford, 1944) and it  is shown that the 
theory of multimolecular adsorption provides methods for calculating the surface areas from all types of iso- 
thermal. From Fig. 3, where a - x curves for equation (lo) are plotted for n = 2, 3, 4, and 5 and also n = w , 
i t  will be Seen that when n > 3  the curves become Convex to  the x axis and the straight part tends to vanish. 

decreases, the curves no longer extrapolate back to a = 1 at  low pressures, but become concave to the x 
axis and approach the origin at  a = 0. The combined effect of these two factors may easily create an inter- 
mediate linear range on an isothermal for which n >3, which does not extrapolate back to a = 1, so that no 
theoretical significance can be attached to “ point €3 ” since its location will depend on the value of c, and the 
greater the magnitude of c the closer will “point B ” approach ‘‘ point A.” The as.eement between the saturation 
values derived from the Langmuir equation and the “ point A ” values is discussed in Part IV. 

Finally, it should be emphasised that the new theory, unlike the older “ potential ” theories of multilayer 
adsorption put forward by Eucken and Polanyi, does not postulate the existence of long-range adsorptive 
forces, but is consistent with Langmuir’s views on the short range of these forces. Adsorption beyond the 
first layer takes place under the influence of the cohesive forces of the molecules of the adsorbed substance 
acting as in the liquid state, so that a fraction of the surface must always be covered with a layer more than one 

The application of the theory to linear isothernials is considered in more detail in Part IV. 
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molecule thick except a t  very low pressures, or above the critical temperature, or in pores too narrow to  admit 
a second layer. Although the new theory gives a satisfactory explanation of S-shaped isothermals without 
assuming that capillary condensation occurs, i t  should be regarded as complementary to, rather than as super- 
seding, the capillary theory. 
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